Главная » 2018 » Апрель » 14 » Этот дивный цветной мир
00:54
Этот дивный цветной мир


Цвет — это не свойство света или объектов, отражающих его, а ощущение, рождающееся в мозге.

Мы, люди, пребываем в уверенности, что наша зрительная система совершенна. Она позволяет нам воспринимать пространство в трех измерениях, замечать объекты на расстоянии и свободно двигаться. Мы обладаем способностью точно узнавать других людей и угадывать их эмоции, отражающиеся на лице. По сути дела, мы настолько «зрительные» существа, что нам трудно представить себе сенсорные миры животных, обладающих иными способностями, недоступными нам, — например, летучей мыши, ночной охотницы, которая обнаруживает маленьких насекомых, ориентируясь на эхо от издаваемых ею высокочастотных звуков.

Вполне естественно, что наши знания о цветовом зрении основываются преимущественно на собственном опыте: исследователям легко проводить эксперименты с участием испытуемых, готовых ответить, например, какие смешения цветов выглядят одинаково, а какие различаются. Несмотря на то, что нейробиологи путем регистрации разряда нейронов подтвердили полученные сведения для ряда видов живых существ, все же вплоть до начала 70-х гг. прошлого века мы оставались в неведении относительно того, что многие позвоночные, не относящиеся к млекопитающим, видят цвета части спектра, невидимой для человека, — в ближнем ультрафиолете (УФ).


Слева - изображение как его видит птица, справа – как его видит человек.

Открытие ультрафиолетового зрения началось с исследований поведения насекомых выдающимся англичанином сэром Джоном Лаббоком, лордом Эйвбери (Sir John Lubbock, Lord Avebury), другом и соседом Чарльза Дарвина, членом парламента, банкиром, археологом и натуралистом. В начале 1880-х гг. Лаббок заметил, что в присутствии УФ-излучения муравьи переносят свои личинки в более темные места или в те, что освещены светом с более длинными волнами. Затем в середине 1900-х гг. австрийский натуралист Карл фон Фриш (Karl von Frisch) доказал, что пчелы и муравьи не только видят ультрафиолет как отдельный цвет, но и пользуются им как своеобразным небесным компасом.

Многие насекомые так же воспринимают ультрафиолетовый свет; по результатам исследований последних 35 лет птицы, ящерицы, черепахи и многие рыбы обладают УФ-рецепторами в сетчатке. Почему же тогда млекопитающие не такие, как все? Чем вызвано обеднение их цветового восприятия? Поиск ответа раскрыл перед нами любопытную эволюционную историю и привел к новому пониманию чрезвычайно богатого зрительного мира птиц.

Как развивалось цветовое зрение

Цветовое зрение позвоночных обусловлено наличием колбочек в сетчатке, представляющей собой слой нервных клеток, которые передают зрительные сигналы в мозг. В каждой колбочке содержится пигмент, состоящий из разновидности белка опсина, связанного с молекулой вещества под названием ретиналь, которое находится в близком родстве с витамином A. Когда пигмент поглощает свет (точнее, отдельные сгустки энергии, называемые фотонами), то полученная им энергия заставляет ретиналь изменять свою форму, что запускает каскад молекулярных превращений, активирующих колбочки, а вслед за ними и нейроны сетчатки, один из типов которых посылает импульсы по зрительному нерву, передавая в мозг информацию о воспринятом свете.

Чем сильнее свет, тем больше фотонов поглощается зрительными пигментами, сильнее активация каждой колбочки, и более ярким кажется воспринимаемый свет. Однако информация, исходящая от одной колбочки, ограничена: она не может сообщить мозгу, какова длина волны света, задействовавшего ее. Световые волны разной длины поглощаются по-разному, и каждый зрительный пигмент характеризуется определенным спектром, показывающим, как поглощение света зависит от длины волны.


Шалашник

Зрительный пигмент может одинаково поглощать свет с двумя различными длинами волн, и, хотя фотоны света будут нести различную энергию, колбочка не сможет их различить, поскольку и те, и другие вызывают изменение формы ретиналя и таким образом запускают один и тот же молекулярный каскад, ведущий к активации. Колбочка способна только считывать поглощенные фотоны, она не в состоянии отличить одну длину волны света от другой. Следовательно, колбочка может быть в равной степени активирована сильным светом со сравнительно плохо поглощаемой длиной волны и тусклым светом с хорошо поглощаемой длиной волны.

Для того, чтобы мозг мог увидеть цвет, он должен сравнить реакции нескольких классов колбочек, содержащих разнообразные зрительные пигменты. Наличие более чем двух типов колбочек в сетчатке позволяет лучше различать цвета. Опсины, которыми одни колбочки отличаются от других, предоставили нам хорошую возможность изучить эволюцию цветового зрения.

Исследователи могут определить эволюционное родство опсинов в различных классах колбочек и у всевозможных видов, изучая последовательность нуклеотидных оснований («алфавита» ДНК) в генах, кодирующих эти белки. В результате получается генеалогическое древо, свидетельствующее о том, что опсины — очень древние белки, существовавшие еще до появления основных групп животных, населяющих Землю в наши дни. Мы можем проследить четыре линии развития пигментов колбочек позвоночных, названных описательно по той области спектра, к которой они наиболее чувствительны: длинноволновые, средневолновые, коротковолновые и ультрафиолетовые.


Тупик ультрафиолете

Помимо колбочек, все основные группы позвоночных имеют в своих сетчатках еще и палочки, которые содержат зрительный пигмент родопсин и обеспечивают способность видеть при очень слабом освещении. Родопсин сходен по структуре и спектральным характеристикам поглощения с пигментами колбочек, наиболее чувствительными к длинам волн в середине зрительного спектра. Из таких пигментов он и развился сотни миллионов лет назад.

Птицы обладают четырьмя колбочковыми пигментами с различными спектральными характеристиками, по одному из каждой линии. Млекопитающие же обычно имеют всего два таких пигмента: один из них особенно чувствителен к фиолетовому свету, а другой — к длинноволновому. Почему животные оказались обделенными? Вероятно, дело в том, что на ранних стадиях развития, в период мезозоя (от 245 до 65 млн. лет назад), они были мелкими зверьками, ведущими скрытный ночной образ жизни.

По мере того как их глаза привыкали видеть в темноте, все большее значение приобретали высокочувствительные палочки, а роль цветового зрения падала. Таким образом, животные потеряли два из четырех колбочковых пигментов, которыми обладали их предки и которые сохранились у большинства рептилий и птиц.


Глаз стрекозы

Когда 65 млн. лет назад вымерли динозавры, млекопитающие получили новые возможности для специализации, и их разнообразие стало быстро возрастать. Представители одной группы, к которой относились предки людей и других ныне живущих приматов, перешли на дневной образ жизни, забрались на деревья, важной частью их рациона стали фрукты. Окраска цветов и плодов часто выделяет их на фоне листвы, но млекопитающие со своим единственным колбочковым пигментом для длинноволнового света не смогли бы различать контрастные цвета в зеленой, желтой и красной частях спектра. Однако эволюция уже заготовила инструмент, который помог приматам справиться с проблемой.

Изредка при формировании яйцеклеток и сперматозоидов в процессе деления клеток из-за неравного обмена участками хромосом возникают гаметы с хромосомами, содержащими дополнительные копии одного или нескольких генов. Если в последующих поколениях такие дополнительные копии сохранятся, то естественный отбор может закрепить возникающие в них полезные мутации.



По мнению Джереми Натанса (Jeremy Nathans) и Дэвида Хогнесса (David Hogness) из Стэнфордского университета, нечто подобное происходило на протяжении последних 40 млн. лет в зрительной системе предков приматов. Неравноценный обмен ДНК в половых клетках и последующая мутация дополнительной копии гена, кодирующего пигмент, чувствительный к длинноволновому свету, привели к появлению второго пигмента, область максимальной чувствительности которого была смещена. Таким образом, данная ветвь приматов отличается от остальных млекопитающих тем, что имеет не два, а три колбочковых пигмента и трихроматическое цветовое зрение.



Хотя новое приобретение значительно усовершенствовало зрительную систему, оно все же не дало нам квинтэссенцию восприятия окружающего мира. Наше ощущение цвета несет в себе следы исправления эволюционной ошибки, ему не хватает еще одного пигмента до тетрахроматической зрительной системы птиц, многих рептилий и рыб.

Мы генетически несовершенны еще в одном отношении. Оба наших гена пигментов, чувствительных к длинноволновой части спектра, лежат в X-хромосоме. Поскольку у самцов она всего одна, мутация любого из этих генов может привести к тому, что особи будет трудно различить красный и зеленый цвета. Самки реже страдают подобным нарушением, поскольку в том случае, если ген поврежден в одном экземпляре X-хромосомы, пигмент все же может производиться по инструкциям, содержащимся в здоровом гене в другой X-хромосоме.



Цветовое зрение позвоночных зависит от клеток сетчатки, называемых колбочками. Птицы, ящерицы, черепахи и многие рыбы обладают четырьмя типами колбочек, а большинство млекопитающих — всего двумя.

Предки млекопитающих имели полный набор колбочек, однако утратили половину в тот период своей эволюции, когда они вели преимущественно ночной образ жизни, и цветовое зрение не имело для них большого значения.

Предки приматов, к которым относится и человек, вновь обрели третий тип колбочек благодаря мутации одной из двух имевшихся.

Большинство млекопитающих, однако, имеют всего два типа колбочек, что делает их цветовое восприятие весьма ограниченным в сравнении со зрительным миром птиц.


Птичье превосходство

Анализируя ДНК современных видов животных, исследователи смогли заглянуть в глубь времен и определить, как изменялись колбочковые пигменты в ходе эволюции позвоночных. Результаты показывают, что на ранних этапах развития они имели четыре типа колбочек (цветные треугольники), в каждом из которых содержался свой зрительный пигмент.



Млекопитающие на определенном этапе эволюции потеряли два из четырех видов колбочек, что, вероятно, было связано с их ночным образом жизни: при слабом освещении колбочки не нужны. Птицы и большинство рептилий наоборот сохранили четыре колбочковых пигмента с различными спектрами поглощения. После того, как динозавры вымерли, разнообразие млекопитающих стало быстро возрастать, и одна из линий эволюции, которая привела к сегодняшним приматам — африканским обезьянам и людям, — снова приобрела третий тип колбочек благодаря дупликации и последующей мутации гена одного из оставшихся пигментов. Поэтому мы, в отличие от большинства млекопитающих, обладаем тремя типами колбочек (вместо двух) и трихроматическим зрением, что, конечно, стало некоторым прогрессом, но не идет ни в какое сравнение с богатым зрительным миром птиц.


эта же картинка в большом размере

На ранних этапах своей эволюции млекопитающие потеряли не только колбочковые пигменты. Каждая колбочка глаза птицы или рептилии содержит цветную каплю жира, а у млекопитающих ничего подобного нет. Эти сгустки, в которых в высокой концентрации содержатся вещества, называемые каротиноидами, расположены таким образом, что свет должен пройти через них перед тем, как попасть на стопку мембран во внешнем сегменте колбочки, где помещается зрительный пигмент. Жировые капли выполняют роль фильтров, не пропуская свет с короткими волнами и сужая тем самым спектры поглощения зрительных пигментов. Такой механизм уменьшает степень перекрытия между спектральными зонами чувствительности пигментов и увеличивает количество цветов, которые в теории птица может различить.

ВАЖНАЯ РОЛЬ КАПЕЛЬ ЖИРА В КОЛБОЧКАХ

Колбочки птиц и многих других позвоночных сохранили несколько особенностей, утерянных млекопитающими. Важнее всего из них для цветового зрения наличие цветных капель жира. Колбочки птиц содержат красные, желтые, почти бесцветные и прозрачные капельки. На микрофотографии сетчатки гаички хорошо заметны желтые и красные пятна; черными кружками обведены несколько бесцветных капель. Все капельки, кроме прозрачных, служат фильтрами, не пропускающими свет с короткими длинами волн.



Такая фильтрация сужает области спектральной чувствительности трех из четырех типов колбочек и сдвигает их в часть спектра с более длинными волнами (график). Отсекая часть длин волн, на которые реагируют колбочки, капли жира позволяют птицам различать больше цветов. Озон в верхних слоях атмосферы поглощает свет с длиной волны короче 300 нм, поэтому УФ-зрение птиц работает только в ближнем ультрафиолете — в диапазоне от 300 до 400 нм.

За пределами человеческого восприятия

Наши эксперименты показали, что птицы используют для цветового зрения все четыре типа колбочек. Однако человеку фактически невозможно понять, как они воспринимают цвет. Пернатые не только видят в ближнем ультрафиолете, но также могут и различать такие цвета, которые мы не способны даже представить себе. В качестве аналогии можно сказать, что наше трихроматическое зрение представляет собой треугольник, а их тетрахроматическое требует дополнительного измерения и образует тетраэдр, или трехгранную пирамиду. Пространство над основанием тетраэдра заключает в себе все то разнообразие цветов, которые лежат за пределами человеческого восприятия.



Какую пользу могут извлекать крылатые создания из такого богатства цветовой информации? У многих видов самцы окрашены гораздо ярче самок, и когда стало известно, что птицы воспринимают УФ-свет, специалисты начали исследовать влияние ультрафиолетовых цветов, невидимых для человека, на выбор полового партнера у птиц. В ходе серии экспериментов Мюир Итон (Muir Eaton) из Миннесотского университета изучил 139 видов пернатых, у которых представители обоих полов выглядят, по мнению человека, одинаково. Основываясь на измерении длины волны света, отражаемого от оперения, он заключил, что более чем в 90% случаев птичий глаз видит разницу между самцами и самками, о чем орнитологи раньше не догадывались.

Предствавим ультрафиолетовый мир

Несмотря на то что никто не знает, как выглядит окружающая действительность для птиц, фотографии цветов тунбергии позволяют нам хотя бы отдаленно представить себе, насколько УФ-свет мог бы изменить видимый нами мир. Для нас в центре цветка располагается маленький черный круг (слева). Однако камера, оборудованная для съемки в одном лишь УФ-свете, «видит» совсем другую картину, в том числе гораздо более широкое темное пятно в центре (справа)


та же картинка в большом размере

Франциска Хаусманн (Franziska Hausmann) исследовала самцов 108 видов австралийских птиц и обнаружила, что цвета с УФ-компонентом чаще всего находятся в декоративном оперении, которое участвует в демонстрациях при ухаживании. Интересные данные получили научные группы из Англии, Швеции и Франции в ходе изучения голубых лазоревок (Parus caeruleus), евразийских родичей североамериканских гаичек, и обыкновенных скворцов (Sturnus vulgaris). Оказалось, что самки отдают предпочтение тем кавалерам, чье оперение отражает больше УФ-лучей. Дело в том, что отражение УФ-света зависит от субмикроскопической структуры перьев, и потому может служить полезным индикатором состояния здоровья. Эмбер Кейсер (Amber Keyser) из Университета Джорджии и Джеффри Хил из Обернского университета обнаружили, что те самцы голубой гуираки, или синего большеклюва (Guiraca caerulea), которые обладают оперением более насыщенного, яркого голубого цвета, смещенного в УФ-область, оказываются крупнее, контролируют более обширные территории, богатые добычей, и кормят свое потомство чаще, чем другие особи.


Видео демонстрирующее оперение каика и совы в ультрафиолетовом спектре.

Наличие УФ-рецепторов может дать животному преимущества в добывании пищи. Дитрих Буркхардт (Dietrich Burkhardt) из Регенсбургского университета в Германии обратил внимание, что восковые поверхности многих фруктов и ягод отражают УФ-лучи, что делает их более заметными. Он обнаружил, что пустельги способны разглядеть тропинки полевок. Эти мелкие грызуны прокладывают пахучие дорожки, помеченные мочой и экскрементами, которые отражают ультрафиолет и становятся видимыми для УФ-рецепторов пустельги, в особенности весной, когда метки не скрыты растительностью.


Видео: зрение хищных птиц

Люди, не знакомые со столь интригующими открытиями, часто спрашивают меня: «Что дает птицам ультрафиолетовое зрение?» Они считают подобную особенность какой-то причудой природы, без которой всякая уважающая себя птица смогла бы прожить вполне счастливо. Мы находимся в ловушке наших собственных чувств и, понимая важность зрения и боясь его лишиться, все же не можем вообразить себе картину видимого мира, более живописную, чем наша собственная. Унизительно осознавать, что эволюционное совершенство обманчиво и неуловимо, и что мир не совсем таков, каким мы его представляем себе, глядя на него сквозь призму человеческого самомнения.

ВИРТУАЛЬНЫЙ ВЗГЛЯД В ЗРИТЕЛЬНЫЙ МИР ПТИЦ

Пространство цветового зрения человека можно изобразить в виде треугольника. Видимые нами цвета спектра располагаются вдоль жирной черной кривой внутри него, а все многообразие остальных оттенков, получаемых путем смешения, находится ниже этой линии. Чтобы отобразить цветовое зрение птицы, нам нужно добавить еще одно измерение, и в результате получается объемное тело, тетраэдр. Все цвета, которые не активируют УФ-рецепторы, лежат на его основании. Однако поскольку капли жира в колбочках увеличивают количество цветов, различаемых птицами, воспринимаемый ими спектр не образует фигуру, напоминающую плавник акулы, а располагается вдоль самых краев треугольного основания. Цвета, в восприятии которых задействованы УФ-рецепторы, заполняют пространство над основанием. Например, красное, зеленое и синее оперение расписного овсянкового кардинала (Passerina ciris) отражает различное количество ультрафиолета в дополнение к тем цветам, которые видим мы.


та же картинка крупно

Чтобы представить графически, какие цвета видит самка кардинала, когда смотрит на своего партнера, мы должны выйти из плоскости треугольника в объем тетраэдра. Цвета, отражаемые от небольших областей оперения, представлены кластерами точек: ярко-красные для грудки и горлышка, более темные красные для гузки, зеленые для спины и голубые для головы. (Мы не можем, конечно, показать цвета, которые видит птица, поскольку ни один человек не способен воспринять их.) Чем больше УФ в цвете, тем выше расположены точки над основанием. Точки в каждом кластере образуют облачко, поскольку длина волны отраженного света варьирует в пределах одной и той же области, и нам, людям, это тоже видно, если посмотреть на красные области на груди и горлышке.


та же картинка крупно

Итого: птицы видят в ультрафиолете, в поляризованном свете и, возможно, «в магнитных полях». Как мозг обрабатывает эту информацию и чем именно они видят/»чувствуют» магнитные поля — не известно. Нельзя просто так взять и объяснить что видят птицы, но специальные лампы с ультрафиолетовым спектром для птиц владельцам надо покупать.

источник
Просмотров: 93 | Добавил: UFO | Теги: природа | Рейтинг: 5.0/2
Всего комментариев: 4
2
1  
Есть люди-тетрахроматы, которые способны видеть в 100 раз больше цветов, чем обычный человек. Наверное, мир в их восприятии невероятно красив.

3
2  
они то ДА, а мы все равно увидим в RGB
"Как объяснить слепому, Слепому, как ночь, с рожденья, Буйство весенних красок, Радуги наважденье?"

1
3  
Для того, чтобы объяснить цвета слепым людям, используют другие органы чувств: осязание (дают потрогать кору дерева или землю и объясняют, что эти вещи коричневые; зелёный - живые частицы растений, коричневый - хрустящие, неживые; пламя, огонь - красный; бетон - серый); вкус (ягоды - красный; запах листьев и травы - это запах зелёного цвета); слуха (звук сирены - красный, потому что это цвет тревоги) и т.д.
А зрячим объяснить особенности тетрахромного цветовосприятия ещё проще, т.к. мы понимаем, что такое цвет.

1
4  
Мдас
Мы привыкли к такой гамме и по своему счастливы
А на Марсе, скажем,другой цвет и покажи местной ящерке зелёный, она придёт в ужас

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]